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Abstract

Five classical and uncontroversial axioms—symmetry, weak Pareto optimality, re-
stricted monotonicity, midpoint domination, and superadditivity—characterize a
bargaining solution. It assigns to each player their midpoint, that is, the n-th share
of their utopia point, and equally divides what remains.
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1 Introduction

There is no scientific article on cooperative bargaining that does not mention at least one
of the three big solutions: those of Nash (1950), Kalai and Smorodinsky (1975), and the
egalitarian solution of Kalai (1977). The reason is (besides their being the first solutions
that appeared in the literature) that all three solutions have solid foundations in terms of
axiomatization, strategic implementation, and more. In particular, all three satisfy weak
Pareto optimality and symmetry. The Kalai-Smorodinsky and egalitarian solutions also
satisfy restricted monotonicity, which requires certain expansions of the feasible set not to
hurt any player. The Nash and Kalai-Smorodinsky solutions satisfy midpoint domination
(cf. Luce and Raiffa, 1957; Sobel, 1981) meaning that the solution is at least as good
as using a fair lottery to determine a winner who will obtain the surplus at the expense
of everyone else. And the egalitarian solution is superadditive (cf. Perles and Maschler,
1981), which means that solving several problems simultaneously is weakly beneficial to
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everyone compared to solving them separately. None of these solutions, however, satisfy
all five axioms. Does combining all five yield a unique and meaningful bargaining solution?

We show that the answer is affirmative: these axioms characterize the solution that
assigns to each player her midpoint and an equal share of what remains. Formalizing and
proving this statement is the sole purpose of this short note.

2 Notation, definitions, axioms, and a lemma

Let N = {1, . . . , n} be a finite set of players. Let x, y ∈ Rn. We write x ≥ y if xi ≥ yi for
all i ∈ N , we write x > y if x ≥ y and x ̸= y, and we write x ≫ y if xi > yi for all i ∈ N .
Moreover, we denote by 1 ∈ Rn the vector with 1 in every entry.

A set S ⊆ Rn is 0-comprehensive if for all x ∈ S and all y ∈ Rn with 0 ≤ y ≤ x it
holds that y ∈ S. A bargaining problem is a compact, convex, and 0-comprehensive set
S ⊆ Rn

≥0 such that there is x ∈ S with x ≫ 0.1 Denote the set of all bargaining problems
by B. For S ∈ B, denote by a(S) its utopia point, that is, for all i ∈ N

ai(S) ≡ max {α ∈ R≥0| there is x ∈ S with xi = α} .

A point x ∈ S is weakly Pareto efficient if for all y ≫ x it holds that y /∈ S; x ∈ S is
strongly Pareto efficient if for all y > x it holds that y /∈ S.
A problem H ∈ B is a hyperplane problem if there are p ∈ Rn

≫0 and γ > 0 such that

H = {x ∈ Rn| x ≥ 0 and p · x ≤ γ} ;

and a bargaining problem Q ∈ B is a cube problem if there is α > 0 such that

Q =
{
x ∈ Rn

≥0

∣∣ xi ≤ α for all i ∈ N
}
.

Denote by H the set of all hyperplane problems and by Q the set of all cube problems.
A bargaining problem is symmetric if for every x ∈ S and every permutation π on N

the point
(
xπ(i)

)
i∈N is an element of S as well. Note that all cube problems are symmetric,

but hyperplane problems might not be.
A bargaining solution is a map φ : B → Rn with φ(S) ∈ S for all S ∈ B. Two standard

axioms, which are satisfied by almost all solutions, are the following.

Symmetry A bargaining solution φ is symmetric if φi(S) = φj(S) for all symmetric
S ∈ B and all i, j ∈ N .

1For the ease of exposition we restrict attention to bargaining problems where all players have disagree-
ment point 0. All axioms could be formulated for bargaining problems with arbitrary disagreement points
without changing the result. In particular, we do not assume that a bargaining solution be translation
invariant.
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Weak Pareto Optimality A bargaining solution φ is weakly Pareto optimal if for all
S ∈ B the point φ(S) is weakly Pareto efficient in S.

These axioms are satisfied, in particular, by the solutions of Kalai and Smorodinsky
(1975), and Kalai (1977), which are defined, respectively, as

µKS(S) ≡ ρ(S)a(S), where ρ(S) ≡ max {ρ ≥ 0| ρa(S) ∈ S} ,
µK(S) ≡ σ(S)1, where σ(S) ≡ max {σ ≥ 0| σ1 ∈ S} .

Kalai and Smorodinsky (1975) also introduced the following axiom, which ensures that
some expansions of the set of available utility vectors will not be detrimental to any
player.2

Restricted Monotonicity A bargaining solution is restricted monotonic if for all S, T ∈
B with a(S) = a(T ) and S ⊆ T it holds that φ(S) ≤ φ(T ).

As these axioms are well-known in the bargaining literature, we skip a broader discussion
and refer the interested reader to Peters (1992) and Thomson (1994). Equally uncontro-
versial and intuitive, albeit less often discussed in the literature, are the following two.

Midpoint Domination A bargaining solution satisfies midpoint domination if φ(S) ≥
m(S) ≡ 1

n
a(S) for all S ∈ B.

Superadditivity A bargaining solution φ is superadditive if φ(S + T ) ≥ φ(S) + φ(T )
for all S, T ∈ B.

In order to appreciate midpoint domination, observe that the random dictatorship, which
randomly selects a player who can choose what allocation to implement, is a simple and ex-
ante fair bargaining procedure whose utility allocation strictly dominates the disagreement
point. Expecting this mechanism as a last resort if no other bargaining solution can be
agreed upon, player i ought to reject any bargaining solution that does not assign her at
least mi(S). For obvious reasons the point m(S) ≡ (mi(S))i∈N is called the midpoint of
S. It has already played a crucial role in the construction of the discrete solution of Raiffa
(1953), see also Diskin et al. (2011), and was used by Moulin (1983) (see Thomson, 1994)
to characterize the Nash solution.

Superadditivity also has a clear motivation: Solving two bargaining problems simulta-
neously might allow players to find Pareto superior utility allocations compared to those
that would be found if these problems were solved separately. A planner who wants to
ensure that there are no efficiency losses ought, hence, to ensure that separate bargaining
problems can be treated as one, without harming any player.

2In particular, this axiom does not apply if the increase of the set of available utility allocations is
solely based on a rescaling of utilities.
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We shall prove that the unique bargaining solution obtained by imposing these five
axioms is given by

µ∗(S) ≡ m(S) + τ(S)1, where τ(S) ≡ max {τ ≥ 0 : m(S) + τ1 ∈ S} ,

which, starting from the midpoint, allocates utility equally among players. The following
lemma is simple, yet crucial for the characterization.

Lemma. Let φ satisfy symmetry, weak Pareto optimality, midpoint domination, and su-
peradditivity. Let H ∈ H and Q ∈ Q. Then φ (H) = µ∗ (H) = m(H), φ (Q) = µ∗ (Q) =
a(Q) and φ (H +Q) = µ∗ (H +Q) = m(H) + a(Q). Moreover, µ∗ (H +Q) is strongly
Pareto efficient in H +Q.

Proof. Midpoint domination impies φ(H) = m(H) = µ∗(H); and symmetry together with
weak Pareto optimality implies φ(Q) = a(Q) = µ∗(Q). One easily finds that µ∗ (H +Q) =
m(H) + a(Q). We show that m(H) + a(Q) is strongly Pareto efficient in H +Q. Assume
this were not the case. Then, there are h ∈ H and q ∈ Q such that h+ q > m(H)+a(Q).
Since q ≤ a(Q), there is i ∈ N with hi > mi(H). Thus, there is j ∈ N with hj < mj(H).
But this implies hj+qj < mj(H)+aj(Q) ≤ hj+qj, which is impossible. By superadditivity,
φ (H +Q) ≥ φ(H) + φ(Q) = m(H) + a(Q). As the latter is strongly Pareto efficient,
φ (H +Q) = m(H) + a(Q) = µ∗ (H +Q). ■

3 The characterization

Theorem. A bargaining solution φ satisfies symmetry, weak Pareto optimality, restricted
monotonicity, midpoint domination, and superadditivity if and only if φ = µ∗.

The idea of the proof for S ∈ B with φ(S) ≪ a(S) is depicted in Figure 1. We find
a hyperplane problem H and a cube problem Q such that φ(S) = µ∗ (H +Q). This is
done by constructing for any (suitable) β ≥ 0 a set of n “support points” as follows: for
each i ∈ N start from ai(S) on the i-axis and move distance β in all directions but i.
The hyperplane problem Hβ is defined as the unique hyperplane problem in which all
these points are Pareto efficient, i.e., lie on its surface. For β = 0, it holds that Hβ ⊆ S,
and as β increases, Hβ is increasing as well (with respect to set inclusion). There is
β∗ < mini∈N ai(S) such that φ(S) lies on the Pareto frontier ofHβ∗

. We now obtainH and
Q by letting Q be the cube problem with edge length β∗ and letting H be the hyperplane
whose surface is parallel to that ofHβ∗

but that is shifted down by β∗ in all directions. The
definition of H and Q together with our Lemma imply µ∗(S) = µ∗ (H +Q) = φ (H +Q).
Showing that φ(S) = φ (H +Q) is similar to the construction in Kalai (1977).

If φi(S) = ai(S) for some i ∈ N , the construction above is problematic as Hβ∗

might not be unique, and even if it is unique, it might have a normal vector that is not
strictly positive. In order to show that the theorem still holds, one first uses restricted
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Figure 1: Construction of Q and H for S ∈ B with φ(S) ≪ a(S).

monotonicity to show that φ(S) ≥ µ∗(S) for all S ∈ B. Thus, φ(S) can differ from µ∗(S)
only if the latter is not strongly Pareto efficient. Figure 2 depicts the situation where
φ2(S) = a2(S) and φ1(S) > µ∗

1(S). Defining a sufficiently large and sufficiently “flat”
hyperplane problem H (here the dashed hyperplane problem) and setting T ≡ S + H
ensures that µ∗(T ) is strongly Pareto efficient in T and, hence, coincides with φ(T ).
Superadditivity requires now that µ∗(T ) = φ(T ) ≥ φ(S)+φ(H). Figure 2 illustrates that
this inequality is violated if φ(S) > µ∗(S).

The precise proof mainly deals with finding the appropriate hyperplanes, and we post-
pone its details to the next section. We shall close this section with a brief focus on the
independence of the axioms. For q ∈ RN

≫0 with qi ̸= qj for some i, j ∈ N the solution
φq(S) ≡ m(S) + τ q(S)q, where τ q(S) ≡ max {τ ≥ 0|m(S) + τq ∈ S}, satisfies all ax-
ioms but symmetry.3 The solution φ(S) ≡ m(S) satisfies all of them but weak Pareto
optimality. The egalitarian solution satisfies all axioms but midpoint domination. The
Kalai-Smorodinsky solution satisfies all axioms but superadditivity. Finding a solution
that satisfies all axioms but restricted monotonicity is a challenge. For two-player bar-
gaining problems Perles and Maschler (1981) propose to select the unique Pareto efficient
point x ∈ S that equalizes the length of the curves along the Pareto frontier from (a1(S), 0)
to x and from x to (0, a2(S)). They show that the solution is the unique one that sat-

3Interestingly, these solutions do not emerge automatically when the symmetry axiom is simply
dropped as this axiom has important “side effects”. Together with weak Pareto optimality it implies
that the solution is homogeneous and strongly Pareto efficient on Q. Thus, replacing symmetric by re-
quiring that φ be homogeneous and that there be at least one cuboid C with φ(C) = a(C) pins down
a non-symmetric solution: namely φq with q = a(C). The proof is essentially the same as in the sym-
metric case, one only replaces the (symmetric) cube Q by the (asymmetric) cuboid C. In this case, the
uniqueness of C (up to scaling) follows from the characterization itself.
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Figure 2: Uniqueness of φ for S ∈ B with φi(S) = ai(S) for some i ∈ N .

isfies Pareto efficiency, symmetry, scale invariance, superadditivity, and continuity. As
for any hyperplane game H ∈ H it holds that µPM(H) = m(H), superadditivity implies
midpoint domination. So, the Maschler-Perles solution satisfies all our axioms except re-
stricted monotonicity. However, this solution does not generalize to more than 2 players
(Perles, 1982). Pallaschke and Rosenmüller (2006) provide an extension of this solution
to more than two players that is superadditive at least on a subset of all bargaining prob-
lems. But a solution that satisfies all our axioms except for restricted monotonicity on
the set of all bargaining problems with more than two players is, to the best of knowledge,
not known.

4 Proof of the Theorem

For n = 1, there is nothing to show, so let n ≥ 2.
It is clear that µ∗ satisfies symmetry, weak Pareto optimality, and restricted mono-

tonicity. In order to show that it satisfies superadditivity, let S and T be two bargaining
problems and note that m (S + T ) = m(S) +m(T ). Thus, since µ∗(S) + µ∗(T ) ∈ S + T ,
we have τ(S) + τ(T ) ≤ τ (S + T ), so that

µ∗(S) + µ∗(T ) = m(S) +m(T ) + (τ(S) + τ(T ))1

≤ m (S + T ) + τ (S + T )1 = µ∗(S + T ),

as required.
We prove that if φ satisfies the axioms, then φ = µ∗.

Step 1. First assume that φ(S) ≪ a(S). (This case that was illustrated by Figure 1.)
By our Lemma, we can assume without loss of generality that S is not a hyperplane
problem. Thus, φ(S) > m(S), so that

∑
i∈N

φi(S)
ai(S)

> 1.
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Claim 1. There are a hyperplane problem H ∈ H and a cube problem Q ∈ Q such
that φ(S) is Pareto efficient in H+Q, and for all i ∈ N it holds that ai(H)+ai(Q) =
ai(S).

Proof. Let α = mini ai(S) and for any β ∈ [0, α) define

pi(β) ≡
1

ai(S)−β∑
j∈N

1
aj(S)−β

γ(β) ≡ β +
1∑

j∈N
1

aj(S)−β

. (1)

Surely,
∑

i∈N pi(β) = 1 and p(β) ≫ 0 for β ∈ [0, α). Let I ≡ argmini ai(S) and
observe limβ→α pi (β) =

1
|I| for i ∈ I and limβ→α pj (β) = 0 for j ∈ N \ I. Moreover,

limβ→α γ (β) = α. Thus, the maps β 7→ p(β) and β 7→ γ(β) have unique continuous
extensions on the closed interval [0, α]. For every β ∈ [0, α] define the hyperplane
problem Hβ by

Hβ =

{
x ∈ Rn

∣∣∣∣∣ x ≥ 0 and
∑
i∈N

pi(β)xi ≤ γ(β)

}
.

As
∑

i∈N
φi(S)
ai(S)

> 1 we find

∑
i∈N

pi(0)φi (S)− γ(0) =
∑
i∈N

φi(S)
ai(S)∑

j∈N
1

aj(S)

− γ(0) >

∑
i∈N

1
n∑

j∈N
1

aj(S)

− 1∑
j∈N

1
aj(S)

= 0.

(2)

Further,

lim
β→α

∑
i∈N

pi(β)φi (S)− γ (β) =
∑
i∈I

1

|I|
φi(S)− α < 0, (3)

where the strict inequality follows from φi(S) < ai(S) = α for all i ∈ I. The
continuity of the maps p and γ on the closed interval [0, α] and the two strict
inequalities (2) and (3) on its boundaries imply that there is β∗ ∈ (0, α) with∑

i∈N pi (β
∗)φi(S)− γ (β∗) = 0. Let Q be the cube problem with ai(Q) = β∗ for all

i ∈ N , and let H be the hyperplane problem with

H ≡

{
x ∈ Rn

≥0

∣∣∣∣∣∑
i∈N

p∗ixi ≤
∑
i∈N

p∗iφi(S)− β∗

}
The problem H is well defined, since p∗ ≡ p (β∗) ≫ 0 and 0 < β∗ < γ (β∗) =∑

i∈N p∗iφi(S). Surely, φ(S) − β∗
1 is Pareto efficient in H, so that φ(S) is Pareto

efficient in H +Q. Moreover, by (1), it holds that

ai(H) + ai(Q) =
γ (β∗)− β∗

p∗i
+ β∗ = ai (S) , (4)

which proves the claim. ■
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Let T ≡ H + Q. Then ai(T ) = ai(H) + ai(Q) = ai (S) for all i ∈ N by Claim 1.
By our Lemma we have φ(T ) = µ∗(T ). Let R ≡ S ∩ T . By construction, we have
a(S) = a(T ) = a(R) and R ⊆ S. Thus, φ(R) ≤ φ(S) by restricted monotonicity.
Moreover, by Claim 1.1, φ(S) ∈ T , so φ(S) ∈ R. Since φ(S) ≪ a(S) = a(R), each
point x < φ(S) is strongly Pareto dominated in R. Hence, φ(R) = φ(S).

We also have R ⊆ T , so that φ(S) = φ(R) ≤ φ(T ). Moreover, observe that∑
i∈N

p∗iφi(T ) =
∑
i∈N

p∗i (mi(H) + β∗)

=
1

n

∑
i∈N

p∗i (ai(S)− β∗) + β∗

= γ (β∗)

=
∑
i∈N

p∗iφi(S),

by the definition ofH and T , Equation (4), the definition of γ (β∗), and the definition
of β∗. Since p∗ ≫ 0 and φ(S) ≤ φ(T ), this implies φ(S) = φ(T ). Therefore,
φ(S) = µ∗(T ) = m(H) + β∗

1 = m(S) + n−1
n
β∗
1. The weak Pareto efficiency of φ

implies that φ(S) = µ∗(S).

Step 2. We shall now turn to general S ∈ B.

Claim 2. For all S ∈ B it holds that φ (S) ≥ µ∗(S).

Proof. Let B∗ be the set of bargaining problems S with x ≪ a(S) for all x ∈ S
with x ≫ 0. As every S ∈ B can be approximated (with respect to the Hausdorff
topology) by a sequence (Sn)n∈N ⊆ B∗ of increasing (with respect to set inclusion)
bargaining problems with a (Sn) = a (S) for all n ∈ N, it must hold that φ (S) ≥
φ (Sn) = µ∗ (Sn) for all n ∈ N. As µ∗ is continuous (with respect to the Hausdorff
topology), this means φ (S) ≥ µ∗(S). ■

We can assume without loss of generality that there is i ∈ N such that µ∗
i (S) =

ai(S). Indeed, if µ∗(S) ≪ a(S), then µ∗(S) is strongly Pareto efficient, so that
φ(S) = µ∗(S) by Claim 2. Denote the set of all i ∈ N with µ∗

i (S) = ai(S) by I ⊆ N ,
and note that φi(S) = µ∗

i (S) = ai(S) for all i ∈ I. Thus, if I = N , there is nothing
left to show. Suppose I ⊊ N . For ε > 0 define the hyperplane problem Hε by
ai (H

ε) = ε for all i ∈ I and aj (H
ε) = (n− 1) aj(S) for all j ∈ N\I. Let T ≡ S+Hε.

For all i ∈ I it holds that µ∗
i (T ) = µ∗

i (S +Hε) ≥ µ∗
i (S) + µ∗

i (H
ε) > ai (S), and

for all j ∈ N \ I it holds that µ∗
j (T ) = mj(T ) + τ(T ) > aj(S) as τ(T ) > 0. Thus,

µ∗(T ) = µ∗ (S +Hε) ≫ a(S).

Claim 3. The allocation µ∗(T ) is strongly Pareto efficient in T .
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Proof. As µ∗(T ) is at least weakly Pareto efficient in T , there are s ∈ S and h ∈ Hε

that are weakly Pareto efficient in the respective sets, such that s+h = µ∗(T ). Since
µ∗(T ) ≫ a(S) it holds that h ≫ 0. Let pε ≫ 0 be the normal vector of Hε. We
show that s ∈ argmaxs′∈S

∑
i∈N pεis

′
i. Assume this were not the case. Then, as S is

convex, there is t ∈ S, arbitrarily close to s, with δ ≡
∑

i∈N pεi ti −
∑

i∈N pεisi > 0.
Let h′ ∈ Rn be such that h′

i = hi + si − ti + δ for all i ∈ N and observe that h′ ≥ 0
for sufficiently small δ > 0. Since∑

i∈N

pεih
′
i =

∑
i∈N

pεihi +
∑
i∈N

pεisi −
∑
i∈N

pεi ti + δ =
∑
i∈N

pεihi,

it holds that h′ ∈ Hε. Moreover, t + h′ = s + h + δ1, so that t + h′ strongly
Pareto dominates s + h, contradicting the weak Pareto optimality of µ∗(T ). Since
s ∈ argmaxs′∈S

∑
i∈N pεis

′
i and h ∈ argmaxh′∈Hε

∑
i∈N pεih

′
i, it holds that µ∗(T ) =

s + h ∈ argmaxt∈T pεi ti. Hence, as pε ≫ 0, it holds that µ∗(T ) is strongly Pareto
efficient in T . ■

As µ∗(T ) is strongly Pareto efficient, Claim 2 implies φ(T ) = µ∗(T ). Let i ∈ I
and recall that µ∗

i (S) = ai(S), so that τ(S) = n−1
n
ai(S). Let j ∈ N \ I, and let

η = φj (S)− µ∗
j(S). Then

aj(S) +
n− 1

n
ai(S) + η = aj(S) + τ(S) + η = mj(S) +mj (H

ε) + τ(S) + η

= µ∗
j(S) + η +mj (H

ε) = φj(S) + φj (H
ε)

≤ φj (T ) = µ∗
j(T ) = mj(T ) + τ(T )

≤ aj(S) +
n− 1

n
ai(T )

= aj(S) +
n− 1

n
ai(S) +

n− 1

n
ε.

Thus, η ≤ n−1
n
ε. As ε > 0 was arbitrary, it holds that η = 0, so that φj(S) = µ∗

j(S).
As this is true for all j ∈ N \ I, and φi(S) = ai(S) = µ∗

i (S) for all i ∈ I, we have
φ(S) = µ∗ (S). ■

5 Conclusion

Symmetry, weak Pareto optimality, restricted monotonicity, midpoint domination, and
superadditivity are well established and uncontroversial axioms that have been used in
various characterizations of the three big solutions of Nash (1950), Kalai (1977), and
Kalai and Smorodinsky (1975), as well as others. Yet, it seems to have gone unnoticed
thus far that their combination pins down a unique bargaining solution as well. What
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makes these axioms particularly appealing is that they do not rely on any assumptions
about utility representation or comparison. One might argue that midpoint domination
exhibits at least a flavor of expected utility theory as our interpretation of it relies on
utilities of a random dictatorship. But these concerns can be allayed: Indeed, a weaker
version of midpoint domination would be to require that φ(H) = m(H) for all hyperplane
problems H ∈ H, i.e., when m(H) is strongly Pareto efficient, which can be justified on
fairness grounds.4 This axiom together with restricted monotonicity implies midpoint
domination.
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Nash, J. (1950): “The Bargaining Problem”. In: Econometrica 18, pp. 155–162.

Pallaschke, D. and Rosenmüller, J. (2006): “A Superadditive Solution for Cephoidal Bargaining
Problems”. In: International Journal of Game Theory 35, pp. 569–590.

Perles, M. A. (1982): “Non-Existence of Super-Additive Solutions for 3-Person Games”. In:
International Journal of Game Theory 11, pp. 151–161.

Perles, M. A. and Maschler, M. (1981): “The Super-Additive Solution for the Nash Bargaining
Game”. In: International Journal of Game Theory 10, pp. 163–193.

Peters, H. (1992): Axiomatic Bargaining Theory. Kluwer Academic Publishers.

Raiffa, H. (1953): “Arbitration schemes for generalized two person games”. In: Contributions
to the Theory of Games. Ed. by H. Kuhn and A. Tucker. Princeton University Press,
pp. 361–387.

4This axiom has been studied in Anbarci (1998).

10



Sobel, J. (1981): “Distortion of Utilities and the Bargaining Problem”. In: Econometrica 49,
pp. 597–619.

Thomson, W. (1994): “Cooperative Models of Bargaining”. In: Handbook of Game Theory with
Economic Applications. Ed. by R. J. Aumann and S. Hart. Elsevier, pp. 1237–1284.

11


	Introduction
	Notation, definitions, axioms, and a lemma
	The characterization
	Proof of the Theorem
	Conclusion

