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Abstract

We characterize the class of weakly efficient n-person bargaining solutions
that solely depend on the ratios of the players’ ideal payoffs. In the case of
at least three players the ratio between the solution payoffs of any two players
is a power of the ratio between their ideal payoffs. As special cases this class
contains the Egalitarian and the Kalai-Smorodinsky bargaining solutions. For
2-player problems we characterize a larger class of solutions. None of these
results assumes a Pareto axiom. In the 2-player case, adding strong Pareto
efficiency to a subset of our axioms pins down the Kalai-Smorodinsky solution.
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1 Introduction

In a bargaining problem n players have to agree on a feasible utility allocation: if they
can’t reach an agreement, they will receive null payoffs.1 Since its introduction by
Nash (1950) many bargaining solutions have been provided – those of Nash (1950),
Kalai and Smorodinsky (1975), and the Egalitarian solution of Kalai (1977) arguably
being the most influential.

While many characterizations of bargaining solutions use the axiom of Pareto
efficiency, that is they require the full exploitation of the available resources, Roth
(1977b) argued that in the context of bargaining such an assumption might be critical
and provided a characterization of Nash’s solution without it. Following Roth, sev-
eral articles have further developed efficiency-free foundations: Lensberg and Thom-
son (1988) presented an efficiency-free axiomatization of Nash’s solution in an en-
vironment with a variable number of agents; Anbarci and Sun (2011) derived such
an axiomatization for a fixed population. An efficiency-free characterization of the
Kalai-Smorodinsky solution has appeared in Rachmilevitch (2014), and an efficiency-
free characterization of a generalization of Kalai’s (1977) Proportional solutions in
an environment with a variable number of agents has been given by Driesen (2016).

We extend this line of literature by developing an efficiency-free axiomatization
of a class of bargaining solutions that contains both the Egalitarian solution and the
Kalai-Smorodinsky solution as special cases. Our approach is to replace the condition
that a bargaining solution should be invariant under linear transformations by two
weaker axioms, Homogeneity and Pairwise Ratio Independence. The first condition
ensures that the solution of a scaled problem is the scaled solution of the original
problem, given that the scaling is identical across players. The second one implies
that scaling the potential payoffs of several players by the same factor does not
change the solution payoff ratios of these players. The later requirement is motivated
by the importance of the players’ relative payoffs when assessing the “fairness” of a
bargaining solution. While the Egalitarian solution equalizes the players’ payoffs, the
Kalai-Smorodinsky solution equalizes the ratios between the players’ payoffs and their
ideal payoffs (a player’s ideal payoff is the maximal possible payoff he can achieve if
no one else receives anything). We find that for problems with at least three players
a solution µ satisfies our axioms if and only if there is a non-negative number p such

that
µj(S)

µi(S)
=
(
aj(S)

ai(S)

)p
for all players i and j and all bargaining problems S, where

a(S) is the ideal point of the problem S. The Egalitarian and Kalai-Smorodinsky
solutions correspond to p = 0 and p = 1, respectively.

1We make this simplifying assumption here to keep the analysis simple, but of course the model
could be formulated as to allow for arbitrary disagreement payoffs.
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The rest of the paper is organized as follows. In Section 2 we introduce notation,
definitions, and well known axioms from the literature. The main result and some
related observations are stated in Section 3 and proved in Section 4. Section 5 briefly
discusses the two-player case and Section 6 concludes.

2 Preliminaries

Throughout the paper let N = {1, . . . , n} be a finite set of players. A bargaining
problem (or problem) is a compact, convex set S ⊆ RN≥0 of feasible utility allocations
such that 0 ∈ S, x ∈ S for some x > 0, and y ∈ S whenever 0 ≤ y ≤ x and x ∈ S.2

If s ∈ S is such that x /∈ S for all x > s, we say that s is weakly Pareto optimal in S.
If s ∈ S is such that x /∈ S for all x ≥ s with x 6= s, we say that s is strongly Pareto
optimal in S. A problem S satisfies the minimal transfer property if each weakly
Pareto optimal point in S is also strongly Pareto optimal. The interpretation of a
problem S is that the n players need to agree on a single allocation in S. If they
agree on s ∈ S then the bargaining situation is resolved, and each player i obtains
the utility payoff si; otherwise, everybody receives zero. The best that player i can
hope for in S, his ideal payoff in S, is ai(S) = max{si : s ∈ S}. Note that ai(S) > 0
by construction; however, typically a(S) = (a1(S), · · · , an(S)) /∈ S, i.e. this point is
not feasible. A bargaining solution (or solution) is a map µ, that assigns to every
problem S a unique feasible point µ(S) ∈ S. We are interested in characterizing the
set of bargaining solutions with certain properties. The following five axioms are
properties a bargaining solution may satisfy.

Anonymity. µπ(i)(S) = µi(πS) for all i ∈ N , all problems S and all permutations
π.3

Individual Monotonicity. µi(S) ≤ µi(T ) for all i ∈ N and all problems S, T with
S ⊆ T , ai(S) ≤ ai(T ), and aj(S) = aj(T ) for all j 6= i.

Strong Individual Rationality. µ(S) > 0 for all problems S.

Homogeneity. µ(λS) = λµ(S) for all problems S and all λ ∈ R>0.

Independence of Equivalent Utility Representations. µ (k ◦ S) = k ◦ µ (S)
for all problems S and all k ∈ RN>0.

4

2We write x > y if xi > yi for all i ∈ N , and x ≥ y if xi ≥ yi for all i ∈ N .
3For a permutation π and a problem S, we write πS =

{
(sπ(1), · · · , sπ(n)) : s ∈ S

}
.

4For two vectors k, x ∈ RN>0 we define k ◦ x = (kixi)i∈N . Similarly, for a problem S we define
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As all these properties are well known in the bargaining literature (see for instance
Peters, 1992), we omit their discussion here. Note, however, that Homogeneity is
implied by Independence of Equivalent Utility Representations.

3 The Main Result

3.1 A New Class of Bargaining Solutions

A crucial question in bargaining is how the individual payoffs compare to each other.
For instance, the Egalitarian solution of Kalai (1977), E, equalizes the payoffs; that

is,
Ej(S)

Ei(S)
= 1 for all bargaining problems S and all i, j ∈ N . The solution of Kalai

and Smorodinsky (1975), KS, equalizes the fractions of the ideal payoffs that players

achieve; that is,
KSj(S)

KSi(S)
=

aj(S)

ai(S)
for all bargaining problems S and all i, j ∈ N . More

generally, E and KS belong to the following class of bargaining solutions: given
0 ≤ p <∞, let µp be the solution that assigns to each S the (unique) weakly Pareto

optimal point s ∈ S that satisfies
sj
si

=
(
aj(S)

ai(S)

)p
. That is, for any problem S we have

µp(S) = λ(a1(S)p, · · · , an(S)p),

where λ is the maximum possible. Clearly E = µ0 and KS = µ1. In general, the
parameter p measures the advantage of having a large ideal payoff: for p = 0 there
is no advantage as µp = E, and for p = 1 there is some advantage as the payoffs
are proportional to the ideal payoffs. As p increases this advantage becomes much
larger: we say that i ∈ N is an endogenous oligarch in S if ai(S) ≥ aj(S) for all
j ∈ N . Then

lim
p→∞

µp(S) =

{
λai(S) if i is an endogenous oligarch,

0 otherwise,

where λ is chosen such that limp→∞ µ
p(S) is weakly Pareto optimal in S. We call this

solution Endogenous Oligarchy, EO for short. It is easy to see that for all problems
S any two out of {E(S), KS(S), EO(S)} coincide if and only if all three of them
coincide. In fact, in this case µp(S) = E(S) for all p ∈ R≥0.

k ◦ S = {k ◦ s : s ∈ S}, that is k ◦ S is the set S stretched (or shrunken) by factor ki in dimension
i.
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3.2 More Axioms

The following axiom has been formulated by Nash (1950).

Independence of Irrelevant Alternatives. µ(S) = µ(T ) for all bargaining prob-
lems S, T with S ⊆ T and µ(T ) ∈ S.

Although this axiom expresses a sensible idea, namely that the deletion of options
that were not chosen in the first place should not affect the bargaining outcome,
it implies extreme insensitivity to the shape of the problem (see for instance Roth,
1977a, for a discussion and alternative independence axioms). The following is an
n-person version of a weaker axiom which Dubra (2001) considered in the 2-person
case.5

Homogeneous Ideal Independence of Irrelevant Alternatives. µ(S) = µ(T )
for all bargaining problems S, T with S ⊆ T , µ(T ) ∈ S, and a(S) = ra(T ) for
some r ≤ 1.

The rationale behind this axiom is that Independence of Irrelevant Alternatives
should only be applied to pairs of “similar” problems; more precisely, problems for
which the ratios of the ideal payoffs are equal.

The following axiom is new. It requires that changing the utility scales of i and
j by the same factor preserves their solution-payoffs-ratio.

Pairwise Ratio Independence. µi(k◦S)
µj(k◦S) = µi(S)

µj(S)
for all problems S with µ(S) > 0

and all k ∈ RN>0 with ki = kj.

Clearly, this axiom is implied by Independence of Equivalent Utility Representation,
and for n = 2 it is also implied by Homogeneity.

3.3 The Characterization

Our main result is the following Theorem.

Theorem 1. Let n ≥ 3. A solution µ satisfies Anonymity, Individual Monotonic-
ity, Strong Individual Rationality, Homogeneity, Homogeneous Ideal Independence of
Irrelevant Alternatives, and Pairwise Ratio Independence if and only if there exists
p ∈ R≥0 such that µ = µp.

5Dubra (2001) called this axiom “Restricted Independence of Irrelevant Alternatives”. We use
a different name in order to distinguish it from a similar axiom in Roth (1977a).
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The axioms listed in Theorem 1 are independent. Given a vector q ∈ Rn
>0 with

qi 6= qj for some (i, j), the corresponding Proportional solution (Kalai, 1977) satisfies
all the axioms but Anonymity. The Nash solution, N (Nash, 1950), satisfies all the
axioms but Individual Monotonicity. The constant solution that assigns 0 to every
problem satisfies all axioms but Strong Individual Rationality. (Note that Pairwise
Ratio Independence is trivially satisfied in this case.) The solution

µ(S) =

{
E(S) if E(S) ≤ (1, . . . , 1)

(1, . . . , 1) otherwise

satisfies all axioms but Homogeneity. The solution that assigns to each S the point
1
2
KS(S) satisfies all the axioms but Homogeneous Ideal Independence of Irrelevant

Alternatives. The solution that assigns to each S the point λ(2
a1(S)∑
j aj(S) , · · · , 2

an(S)∑
j aj(S) ),

where λ is the maximum possible, satisfies all the axioms but Pairwise Ratio Inde-
pendence.

Remark 2. Both Pairwise Ratio Independence and Homogeneity are implied by
Independence of Equivalent Utility Representations. But the converse is not true.
In particular, if we replace Pairwise Ratio Independence and Homogeneity in Theo-
rem 1 by Independence of Equivalent Utility Representations, we obtain the Kalai-
Smorodinsky solution (see for instance Rachmilevitch, 2014, for details).

3.4 Midpoint Domination

Another one-parameter class of bargaining solutions is given by the Constant Elas-
ticity Solutions (see for instance Sobel, 2001): for p ∈ (−∞, 0) ∪ (0, 1) let

CESp(S) = argmax
s∈S

(∑
i∈N

spi

) 1
p

and note that for p→ 0 this solution converges point-wise against the Nash solution.
We therefore set CES0 = N . This solution is the only Constant Elasticity Solu-
tion that satisfies Independence of Equivalent Utility Representations, similar to the
Kalai-Smorodinsky solution within the class {µp} (see Remark 2). Another similar-
ity between the roles of the Nash solution and the Kalai-Smorodinsky solution in the
respective classes of bargaining solutions comes from the following axiom, which is
due to Sobel (1981).

Midpoint Domination (MD). µ(S) ≥ 1
n
a(S) for all bargaining problems S.
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Midpoint Domination is satisfied both by the Kalai-Smorodinsky solution and by
the Nash solution. Moreover, the latter is the only Constant Elasticity Solution that
satisfies Midpoint Domination, while the former is the only bargaining solution of
the form µp with that property.

Corollary 3. A solution µp satisfies midpoint domination if and only if it is the
Kalai-Smorodinsky solution, i.e. if and only if p = 1.

Proof. For b ∈ (0, 1) let Sb =
{
x ∈ RN≥0 : 1

b
x1 +

∑
j 6=1 xj ≤ 1

}
. It is easy to see

that KS(Sb) = 1
n
a(Sb) and that for p 6= 1 we have µp(Sb) 6= KS(Sb). In particular

µpi (S) < KSi(S) for at least one i ∈ N . Hence, for p 6= 1 the requirement of midpoint
domination is violated.

4 Proof of Theorem 1

Let ∆ =
{
x ∈ RN≥0 :

∑
i∈N xi ≤ 1

}
be the n-dimensional unit simplex, and for a

problem S let ∆(S) = a(S) ◦∆, i.e. ∆(S) is the minimal problem (with respect to
set inclusion) in which the players have the same ideal payoffs as in S.

Lemma 4. Let µ be a solution that satisfies Individual Monotonicity, Strong Indi-
vidual Rationality, Homogeneity, and Homogeneous Ideal Independence of Irrelevant
Alternatives. Then the following holds for every problem S: µ(S) ≥ λµ(∆(S)), where
λ = max{λ′ ∈ R>0 : λ′µ(∆(S)) ∈ S}.

Proof. Let x = µ(∆(S)). By Strong Individual Rationality, x > 0. Let λ be the
maximal number such that λx ∈ S, let T = λ∆(S), and let V = S ∩ T . By
Homogeneity, µ(T ) = λµ (∆(S)). By Individual Monotonicity, µ(V ) ≤ µ(S). And
by Homogeneous Ideal Independence of Irrelevant Alternatives, µ(V ) = µ(T ). Hence
µ(S) ≥ µ(V ) = µ(T ) = λµ (∆(S)).

We start by showing that Theorem 1 holds for problems with the minimal transfer
property.

Lemma 5. Let n ≥ 3 and let µ satisfy all the axioms of Theorem 1. Then there
exists p ∈ R≥0 such that µ(S) = µp(S) for all problems S that satisfy the minimal
transfer property.

Proof. For every i, j ∈ N , i 6= j, define a function ψi,j : RN>0 → R>0 by

ψi,j(a) =
µj (a ◦∆)

µi (a ◦∆)
.
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By Strong Individual Rationality µi (a ◦∆) > 0, so ψi,j is well-defined.
Let S be a problem with the minimal transfer property. By Lemma 1 we have

µ(S) ≥ λµ(∆(S)), and since S has the minimal transfer property λµ(∆(S)) is
strongly Pareto optimal in S. Therefore µ(S) = λµ(∆(S)). Hence,

µj(S)

µi(S)
=
µj(∆(S))

µi(∆(S))
=
µj(a(S) ◦∆)

µi(a(S) ◦∆)
= ψi,j(a(S)).

By Pairwise Ratio Independence the above ratio only depends on ai(S) and aj(S),

by Homogeneity it only depends on the ratio
aj(S)

ai(S)
, and by Anonymity, it does not

depend on i, j. Hence, there is a function Ψ such that

µj(S)

µi(S)
= Ψ

(
aj(S)

ai(S)

)
(1)

for all i, j ∈ N , and Ψ is non-decreasing by Individual Monotonicity.
We extend Ψ on R≥0 by defining Ψ(0) = 0. We argue that Ψ(xy) = Ψ(x) · Ψ(y)

for all x, y > 0. To see this, let T be a problem with the minimal transfer property
that satisfies a3(T )

a2(T )
= x and a2(T )

a1(T )
= y. Then

Ψ(xy) = Ψ

(
a3(T )

a1(T )

)
=
µ3(T )

µ1(T )
=
µ3(T )

µ2(T )
· µ2(T )

µ1(T )
= Ψ(x) ·Ψ(y).

From the theory of functional equations (see for instance Theorem 1.9.13 in Eichhorn,
1978) we know that either Ψ(t) = tp for some p > 0, or

Ψ(t) =

{
1 if t > 0,

0 if t = 0.

Since a(S) > 0 for all bargaining problems, we have
µj(S)

µi(S)
=
(
aj(S)

ai(S)

)p
for some p ≥ 0

in both cases. Since µ(S) = λµ(∆(S)), and since the latter is strongly Pareto optimal
in S, it must hold that µ(S) = µp(S).

The following Corollary is an easy observation after the foregoing two lemmas and
is stated mainly for later reference.

Corollary 6. Let µ satisfy all axioms of Theorem 1 and let p be such that µ = µp on
the set of problems that satisfy the minimal transfer property. Then µ(S) ≥ µp(S)
for every problem S. In particular, if µp(S) is strongly Pareto optimal in S then
µ(S) = µp(S).
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Proof. From Lemma 4 and Lemma 5 it follows that

µ(S) ≥ λµ (∆ (S)) = λµp (∆ (S)) = µp(S)

where the last equality holds as λ is such that λµp (∆ (S)) is weakly Pareto optimal
in S.

The following Lemma is not difficult to show, but builds the last preparatory step
towards the proof of Theorem 1.

Lemma 7. Let µ satisfy all axioms of Theorem 1 and let p be such that µ = µp on
the set of all problems that satisfy the minimal transfer property. Let S be such that
µp(S) < a(S). Then µ(S) = µp(S).

Proof. Let S be such that µp(S) < a(S). Suppose that there is i ∈ N such that
µi(S) > µpi (S), and let δ > 0 be such that µi(S) = (1 + δ)µpi (S) (if there is no
such i we are done, since in this case µ(S) = µp(S) by Corollary 6). Let ε ∈ (0, δ)
be such that (1 + ε)µp(S) < a(S). Let U = convh (S ∪ {(1 + ε)µp(S)}). Then
(1 + ε)µp(S) is a strictly positive extreme point in U and therefore strongly Pareto
optimal. Therefore, by Corollary 6, µ(U) = µp(U) = (1 + ε)µp(S). Further, S ⊆ U
and a(S) = a(U), so the Individual Monotonicity of µ implies

µi(U) ≥ µi(S) = (1 + δ)µpi (S) > (1 + ε)µpi (S) = µpi (U) = µi(U),

which is impossible.

The case of p = 1 can now be proven very easily.

Corollary 8. Let µ satisfy the axioms of Theorem 1 and suppose that µ(S) = µ1(S)
for all problems S with the minimal transfer property. Then µ = µ1.

Proof. If S is such that a(S) ∈ S then a(S) = µ1(S) ≤ µ(S) ≤ a(S). If S is such
that a(S) /∈ S then µ1(S) < a(S) and the claim follows from Lemma 7.

For a number k > 0 and a set M ⊆ N let kM ∈ RN>0 be such that kMi = k for
all i ∈M and kMj = 1 for all j ∈ N \M . In order to avoid complicated notation let

ki = k{i} and ki,j = k{i,j}.

Proof of Theorem 1. Let p be such that µ(S) = µp(S) for all problems that
satisfy the minimal transfer property. We shall prove the theorem for p > 1; similar
arguments work for p < 1. The case p = 1 was covered in Corollary 8.
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For a problem S let m(S) ∈ Nn be such that mk(S) is the number of sets M ⊆ N
with |M | = n + 1 − k and for which there is s ∈ S such that si = ai(S) for all
i ∈ M . Let �` denote the lexicographic order over n-dimensional vectors, that is
m ≺l m′ if and only if there is k ≤ n such that mh = m′h for all h < k and mk < m′k.
We introduce an order over the set of all problems by setting S � S ′ if and only if
m(S) �` m(S ′).

Let S be minimal according to �. Then m(S) is given by (0, . . . , 0, n), in which
case for each s ∈ S there is at most one i ∈ N with si = ai(S). If µp(S) < a(S)
there is nothing to show because of Lemma 7. So, let µpi (S) = ai(S) for some i ∈ N .

Let j 6= i be such that aj(S) ≥ al(S) for all l 6= i, let k =
aj(S)

ai(S)
and let S ′ = ki ◦ S.

Then ai(S
′) = aj(S

′) and therefore µpi (S
′) = µpj(S

′). This implies µpi (S
′) < ai(S

′)
and µpj(S

′) < aj(S
′) since m(S ′) = m(S).6 Suppose there is l 6= i, j such that

µpl (S
′) = al(S

′). Then, since p > 1,

µpi (S
′) =

(
ai(S

′)

al(S ′)

)p
µpl (S

′) =

(
ai(S

′)

al(S ′)

)p−1
ai(S

′) ≥ ai(S
′) > µpi (S

′),

which is impossible. Hence µp(S ′) < a(S ′) and, therefore µ(S ′) = µp(S ′) by Lemma
7. Thus

µj(S)

µl(S)
=
µj (S ′)

µl (S ′)
=
µpj (S ′)

µpl (S ′)
=
µpj(S)

µpl (S)
(2)

for all j, l 6= i by the Pairwise Ratio Independence of µ and µp.
Now, let j 6= i be fixed, let k < minh6=i

ah(S)
ai(S)

, let l be such that al(S) ≥ ah(S) for

all h 6= i, and let S ′ = ki,j ◦S. Then ah(S
′) ≤ al(S

′) for all h ∈ N . If µpl (S
′) < al(S

′)
then

µph(S
′) =

(
ah(S

′)

al(S ′)

)p
µpl (S

′) <

(
ah(S

′)

al(S ′)

)p−1
ah(S

′) ≤ ah(S
′)

and we have µ (S ′) = µp (S ′) by Lemma 7. If, on the other hand, µpl (S
′) = al(S

′)

then one can show with the same arguments as above that µh(S
′)

µg(S′)
=

µph(S
′)

µpg(S′)
for all

g, h 6= l. In particular, µi(S
′)

µj(S′)
=

µpi (S
′)

µpj (S
′)

. Hence,

µi(S)

µj(S)
=
µi(S

′)

µj(S ′)
=
µpi (S

′)

µpj(S
′)

=
µpi (S)

µpj(S)

6Note that m(.) is invariant under linear transformations.
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by the Pairwise Ratio Independence of µ and µp. Together with Equation (2) this
implies µ(S) = λµp(S) for some λ ≥ 1, and since µp(S) is weakly Pareto optimal in
S, it must hold that µ(S) = µp(S).

Let now S not be minimal, but suppose that a(S) /∈ S (so S is not maximal
either), and let the claim be true for all S ′ with S ′ ≺ S (note that a(S ′) /∈ S ′ by
the definition of the order �). Let Q = Q(S) be a maximal set of players with
ai(S) = aj(S) for all i, j ∈ Q. Let q = q(S) = |Q(S)|. The claim shall be shown by
reverse induction over q. So let q = n. Then µp(S) = λa(S) for some λ > 0 which is
independent of p. Since a(S) /∈ S, we have µp(S) < a(S). Hence, µ(S) = µp(S) by
Lemma 7.

Let now q < n and suppose the claim is true for all S ′ with m(S ′) = m(S) and

q(S ′) > q(S). Let k = maxi∈Q,l/∈Q
al(S)
ai(S)

and let S ′ = kQ◦S. Then q(S ′) ≥ q(S)+1 > q

and we have µ(S ′) = µp(S ′) by the induction hypothesis (over q). Hence, by the
Pairwise Ratio Independence of µ and µp

µi(S)

µj(S)
=
µi(S

′)

µj(S ′)
=
µpi (S

′)

µpj(S
′)

=
µpi (S)

µpj(S)
(3)

for all i, j ∈ Q, and

µh(S)

µl(S)
=
µh(S

′)

µl(S ′)
=
µph(S

′)

µpl (S
′)

=
µph(S)

µpl (S)
(4)

for all h, l /∈ Q. Consider first q ≥ 2. (The case q = 1 is not relevant for the induction
argument over q.) We shall distinguish two cases:

1. Suppose first that there is l /∈ Q with al(S) > ai(S) for all i ∈ Q.

(a) First suppose that Q ∪ {l} = N . If µpl (S) < al(S) then

µpi (S) =

(
ai(S)

al(S)

)p
µpl (S) <

(
ai(S)

al(S)

)p−1
api (S) ≤ ai(S)

for all i 6= l, so that µp(S) < a(S) and therefore µ(S) = µp(S) by Lemma
7. So, let µpl (S) = al(S). Assume that there is j ∈ Q with µj(S) =
(1 + δ)µpj(S) for some δ > 0. Then µi(S) = (1 + δ)µpi (S) for all i ∈ Q
by Equation (3). Since S is not minimal (with respect to �), there are
i, j ∈ N and s ∈ S such that si = ai(S) and sj = aj(S). Let without loss
of generality j ∈ Q (recall that |N \Q| = 1). Let ε > 0 and let

S ′ = convh (S ∪ {(1 + ε)aj(S)ej})
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where ej is the j-th unit vector. Then m(S ′) ≺` m(S) as there is no
s′ ∈ S ′ with s′j = aj(S

′) and s′l = al(S
′) for some l 6= j. Hence, µ(S ′) =

µp(S ′) by the assumption that the claim is true for all problems S ′ with
S ′ ≺ S. By the Individual Monotonicity of µ we have µj(S) ≤ µj(S

′)
as S ⊆ S ′, aj(S

′) > aj(S), and ai(S
′) = ai(S) for all i 6= j. Since

µpj(S
′) ≤ (1 + c · ε)µpj(S) for some constant c = c(S), we find that for a

sufficiently small ε

µj(S) ≤ µj(S
′) = µpj(S

′) ≤ (1 + c · ε)µpj(S) < (1 + δ)µpj(S) = µj(S),

which is impossible. So, in this case we must have µ(S) = µp(S).

(b) Now suppose there is h ∈ N \ (Q ∪ {l}). Let j ∈ Q, let k =
aj(S)

al(S)
, and

let S ′ = kl ◦ S. Then q (S ′) = q(S) + 1 and, hence, µ(S ′) = µp(S ′) by the
induction hypothesis (over q). In particular,

µi(S)

µh(S)
=
µi(S

′)

µh(S ′)
=
µpi (S

′)

µph(S
′)

=
µpi (S)

µph(S)

for all i ∈ Q. Together with Equations (3) and (4) and the weak Pareto
optimality of µp(S) this implies that µ(S) = µp(S).

2. Suppose now that ai(S) ≥ al(S) for all i ∈ Q and all l /∈ Q. This implies
ai(S) > al(S) for all i ∈ Q and all l /∈ Q by the definition of Q.

Again we consider two cases:

(a) Suppose that Q ∪ {l} = N . Let k =
aj(S)

al(S)
for some j ∈ Q and let

S ′ = kj,l ◦ S. Then q(S ′) = q(S) and aj(S
′) > ai(S

′) for all i ∈ Q(S ′).
Hence µ(S ′) = µp(S ′) by Part 1 of the proof. In particular,

µj(S)

µl(S)
=
µj(S

′)

µl(S ′)
=
µpj(S

′)

µpl (S
′)

=
µpj(S)

µpl (S)

by the Pairwise Ratio Independence of µ and µp. Together with Equations
(3) and (4) this implies µ(S) = µp(S).

(b) Suppose that there is h ∈ N \ (Q ∪ {l}). Let j ∈ Q, let k =
aj(S)

al(S)
, and let

S ′ = kl ◦ S. Then q (S ′) = q(S) + 1 and µ(S ′) = µp(S ′) by the induction
hypothesis (over q). In particular,

µi(S)

µh(S)
=
µi(S

′)

µh(S ′)
=
µpi (S

′)

µpj(S
′)

=
µpi (S)

µph(S)
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for all i ∈ Q. Together with Equations (3) and (4) and the weak Pareto
optimality of µp(S) in S this implies that µ(S) = µp(S).

If q = 1, each singleton {j} is a maximal set Q. In particular for each j ∈ N
Equation (4) holds for all h, l 6= j. Together with the weak Pareto optimality of
µp(S) in S this implies µ(S) = µp(S).

Finally, let S be such that a(S) ∈ S (that is, S is maximal with respect to �`)
and assume that there is j ∈ ∈N with µj(S) = (1 + δ)µpj(S) for some δ > 0. Let
ε > 0 and let S ′ = convh (S ∪ {(1 + ε) aj(S)ej}). Then S ′ ≺ S and µ(S ′) = µp(S ′)
as seen before. In particular, there exists a constant c such that

µj(S
′) = µpj(S

′) ≤ (1 + c · ε)µpj(S) < (1 + δ)µpj(S) = µj(S)

for sufficiently small ε, in contradiction to the Individual Monotonicity of µ.

5 Two Person Problems

5.1 Continuity

The condition n ≥ 3 in Theorem 1 is needed for two reasons: first, it restricts the
set of functions Ψ that satisfy Equation (1) to power functions; second, it implies
continuity of the bargaining solution in the sense of the following axiom.

Continuity. limk→∞ µ (Sk) = µ(S) for every problem S and a sequence {Sk}k∈N of
problems with limk→∞ Sk = S in the Hausdorff topology.

Nevertheless, the following corollary is an immediate consequence of the proof
of Theorem 1 and the fact that in the 2-player case Pairwise Ratio Independence is
implied by Homogeneity.

Corollary 9. Let n = 2. A solution µ satisfies Anonymity, Individual Monotonic-
ity, Strong Individual Rationality, Homogeneity, Homogeneous Ideal Independence of
Irrelevant Alternatives, and Continuity if and only if there exists a non-decreasing,
continuous function Ψ with Ψ(t) ·Ψ(1

t
) = 1 for all t > 0, such that for every S µ(S)

is the weakly Pareto optimal point in S with µ1(S)
µ2(S)

= Ψ
(
a1(S)
a2(S)

)
.

The axioms in the foregoing corollary are independent: the relevant examples in
Subsection 3.3 are all continuous, and the Lexicographic Egalitarian solution satisfies
(in the 2-player case) all axioms except Continuity.

13



Note that the function Ψ in Corollary 9 need not be a power function. For
example, the solution that corresponds to Ψ∗, where Ψ∗(t) = t + log t for t ≥ 1 and
Ψ∗(t) = [Ψ∗(1

t
)]−1 otherwise, satisfies all axioms in Corollary 9.

5.2 Strong Pareto Efficiency

The analysis above did not require any efficiency assumptions; specifically, no Pareto
axiom was imposed. In this last subsection we investigate the consequence of adding
the following axiom to our analysis.

Strong Pareto Efficiency µ(S) is strongly Pareto optimal in S for all bargaining
problems S.

For n ≥ 3 the solutions {µp} do not satisfy Strong Pareto Efficiency. This is
inevitable: Roth (1979) proved that for n ≥ 3 there exists no solution that satisfies
Strong Pareto Efficiency, Anonymity, and Individual Monotonicity.7 For n = 2,
however, the two axioms are compatible, as demonstrated by the Kalai-Smorodinsky
solution. Moreover, under Strong Pareto Efficiency a strict subset of the axioms from
Corollary 9 suffice to characterize this solution.

Proposition 10. Let n = 2. A solution satisfies Strong Pareto Efficiency, Individ-
ual Monotonicity, Homogeneous Ideal Independence of Irrelevant Alternatives, and
Continuity if and only if it is the Kalai-Smorodinsky solution.

Proof. Clearly KS satisfies the axioms. Conversely, let µ be a solution that satisfies
them. Let S be a problem, let λi = µi(S)

ai(S)
. If λ1 = λ2 then µ(S) = KS(S), because

of Strong Pareto Efficiency. Assume that λ1 6= λ2. Let without loss of generality
λ1 > λ2 and note that λ1 > 0 as 0 is not strongly Pareto optimal in S. Let S ′ =
{x ∈ S : x ≤ λ1a(S)}. Then µ(S ′) = µ(S) by Homogeneous Ideal Independence of
Irrelevant Alternatives. Define now Sn = convh

(
S ′ ∪ {n−1

n
λ1a(S)}

)
. Since µ(S ′) is

strongly Pareto optimal in S ′ and since s1 < λ1a1(S) for all s ∈ Sn \ S ′, we have
that µ(S ′) is Strongly Pareto efficient in Sn for all n. Further, µ(Sn) ≥ µ(S ′) for
all n by Individual Monotonicity, so that µ(Sn) = µ(S ′) = µ(S). In particular,
limn→ µ(Sn) = µ(S), contradicting the Strong Pareto Efficiency of µ.

7In fact Roth (1979) showed that Strong Pareto Efficiency, Symmetry, and Individual Mono-
tonicity cannot simultaneously be satisfied (Symmetry, which is a weakening of Anonymity, only
requires that in symmetric problems—namely, those that are invariant under permutations—the
players’ payoffs should be identical). Garćıa-Segarra and Ginés-Vilar (2015) strengthened that re-
sult recently by showing that for n ≥ 3 there is not solution satisfying both Strong Pareto Efficiency
and Individual Monotonicity.
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A non-trivial feature of Proposition 10 is that it makes no use of the Anonymity
axiom, or any other symmetry condition. Thus, it is a symmetry-free characteri-
zation of a symmetric solution. For the independence of the axioms note that E
satisfies all axioms except Strong Pareto Efficiency, N satisfies all axioms but Indi-
vidual Monotonicity, the Equal Loss solution of Chun (1988) satisfies all axioms but
Homogeneous Ideal Independence of Irrelevant Alternatives, and the Lexicographic
Egalitarian Solution satisfies all axioms but Continuity.

6 Conclusion

We have characterized a one-parameter family of bargaining solutions that contains
both the Egalitarian and the Kalai-Smorodinsky solutions. The role of the latter
within this class is similar to the role of the Nash solution within the class of Constant
Elasticity Solutions, as both are the only member of the respective class that satisfy
Independence of Equivalent Utility Representations or Midpoint Domination. Our
characterization makes no use of an efficiency axiom, following the line of literature
that has arisen from Roth (1977b). Under the restriction to 2-person bargaining
and strongly efficient solutions, a strict subset of our axioms pins down the Kalai-
Smorodinsky solution. This result is non-standard, in the sense that it is a symmetry-
free characterization of a symmetric solution.

Acknowledgment We would like to thank Hans Peters for his valuable comments.

References

Anbarci, N., Sun, C.J., 2011. Weakest collective rationality and the Nash bargaining
solution. Social Choice and Welfare 37, 425–429.

Chun, Y., 1988. The equal-loss principle for bargaining problems. Economics Letters
26, 103–106.

Driesen, B., 2016. Truncated leximin solutions. Mathematical Social Sciences 83,
79–87.

Dubra, J., 2001. An asymmetric Kalai-Smorodinsky solution. Economics Letters 73,
131–136.

Eichhorn, W., 1978. Functional Equations in Economics. Addison-Wesley Pub. Co.

15
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